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Music Recommender System

Introduction

Recommender systems are an area of interest for music, shopping, and other content. With popu-
larity of digital music platforms such as Spotify, Apple music, personalized recommender systems
have high commercial value. An effective system should account for users’ previous preferences
and recommend novel music which the user is likely to enjoy. Some challenges are the large library
of available songs, high dimensionality and heterogeneity of data representing the songs. Collab-
orative filtering (CF) is widely used in recommender systems, and uses feedback from many users
on the items (in our case, songs). Some CF methods disregard the meta-data of items, while re-
cent context-aware methods utilize meta-data. Including richer data may boost performance, and
meta-data of songs may be genre, mood, artist, audio signals, etc. This work uses the Million Song
Dataset (MSD) [1], and associated Taste Profile [12] with user listening history to develop recom-
mender systems. We use simple recommendation baselines and CF. This work aims to build an
effective recommender system in Spark and evaluate the recommender system methods.

We use simple benchmarks of recommending the most popular songs (no personalization), and
recommending the most popular songs of same artists. We use weighted matrix factorization CF on
Spark. We test dimensionality reduction using song meta-data as input, generating latent factors
for songs. The latent factors can be combined with clustering such as k-means for item-based
recommendation. We quantitatively evaluate our recommender system using mean average precision
as a metric [12] and test-split on Taste Profile data, and qualitatively evaluate recommendations
based on visualization and human inspection of nearby songs.

Related Work In CF, the feedback matrix M ∈ Rm×n with m users and n items contains feed-
back from each user for the items. The feedback could be explicit such as ratings, or implicit such
as number of listens, number of clicks, views, etc. In matrix factorization, we create a low-rank
approximation of the feedback matrix M .

M ≈ M̂ = UTV

where U ∈ Rk×m is a low-rank approximation of users, and V ∈ Rk×n approximates items [12].
Some matrix factorization methods include bayesian personalized feedback from implicit feedback
[14] and weighted matrix factorization [6]. Both of these matrix factorization algorithms are aimed
at implicit feedback datasets, which do not have explicit ratings for items. One context-aware
method combined with CF was proposed by Oord, Dieleman, and Schrauwen. They used con-
volutional neural networks with songs’ audio signals as input to generate latent factors. The loss
function was mean squared difference between CNN output and latent factor of song obtained from
weighted matrix factorization. Liang, Zhan, and Ellis used generative model with latent factors for
users and songs.

Dataset The MSD full dataset is around 280 GB, with one million songs. Data for each song is
stored in HDF5 format with 55 fields, with various data structures. The main audio signal features
are timbre, loudness, and pitch, and other data includes artist, song hotness, release year. The Taste
Profile dataset is around 500 MB, and includes song play history for over one million users, over
380,000 songs from the MSD, and over 48 million user, song, play-count triplets in a text-file format.
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Methodology

Figure 1: Pipeline for music recommendation system

Fig. 1 shows the pipeline for building the music recommender system. Here, we describe the invi-
didual steps. We extracted certain fields of song data from the HDF5 files into csv format readable by
Spark. The fields extracted were artist_name, artist_hotness, artist_familiarity, song_title, song_id,
hotness, duration, loudness, year, tempo, key, mode, time_signature, track_id, and segments_timbre,
because these fields seemed useful for our pipeline. The Taste Profile data was in a readily usable
text-format. Data preprocessing included removing duplicate entries, and filling missing data. We
filled missing hotness data with an arbitrary 0.5 hotness. We also assigned unique integer values to
unique users and songs in the dataset to allow use of CF.

The baseline models were recommending the most popular songs (no personalization), and recom-
mending the most popular songs of artist a user listened to. CF is trained by iteratively computing
item factors and user factors by method in [6]. For model training, we tested different ways to split
train-test data. For baseline and CF, we trained on one random song per user and evaluated recom-
mendations for all users in the dataset. We also tested how increasing songs per user in training data
and randomly splitting train-test data would affect CF performance. We recommend the top 10 songs
per user, and all models were evaluated quantitatively using mean average precision (MAP) and pre-
cision at k (p(k)) for k=1,...,10. MAP and p(k) are standard metrics used in ranking/recommender
systems, and defined in Eqs. 1 and 2. MAP and p(k) are especially relevant in our case because we
have implicit feedback (play count) rather than explicit (such as user assigned ratings). It would not
make sense to use an error metric such as mean squared error unless explicit ratings were available.
For m users U = {u1, ...um}, each user ui has p ground truth items Di = {d1, ...dp} and a list of q
recommended items in decreasing relevance Ri = [r1, ...rq]. We define relevance score as

relD(r) =

{
1 if r ∈ D

0 otherwise
.
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Intuitively, MAP measures how many recommended items are in the ground truth set, with order of
relevance taken into account. Precision at k measures how many first k recommended items are in
ground truth set without accounting for relevance order.

Hyperparameter tuning for CF was based on the quantiative MAP and p(k) metrics. The hyper-
parameters were rank, regularization, alpha, and max-iterations. Rank refers to rank of the low-
dimension matrix representation, and increasing rank tends to improve performance up to a plateau.
The regularization parameter tends to have an optimal value. Alpha relates to confidence of implicit
rating, higher alpha indicates stronger preference of item with feedback vs. items without feedback.
Increasing iterations should improve quantitative metric performance but requires more computation
time, requiring a tradeoff.

For qualitative evaluation, we inspected a sample of recommended songs given for different users.
We also used principal components analysis (PCA) to dimensionally reduce the vector representation
of songs from the CF model and visualize songs’ location in reduced space. We would like to
see good dispersion and clustering of similar songs. Qualitative evaluation is useful because song
recommendation is subjective, users have diverse musical taste, and effective recommenders should
be personalized and recommend novel songs to users. We also explored a PCA representation of
song features including hotness, familiarity, duration, loudness, year, and tempo.
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Computation

One of the goals of this project was building the recommender system in Spark. We used AWS
Elastic Map Reduce (EMR) clusters, jupyter notebooks, and pyspark for steps preprocess, train,
tune, and evaluate. Extracting song information was done with EC2 instance and python code,
which required around 24 hours. The data was stored in S3 bucket with shared access between AWS
accounts. All subsequent steps were completed with AWS EMR instances using one m5.xlarge
driver and four m5.xlarge workers. EMR release was emr-5.32.0, hadoop distribution was Amazon
2.10.1, and Spark version was 2.4.7 with python3 and maximizing Spark resource allocation. The
most time-consuming operation was recommending songs for all users using CF, which required
around one hour. Quantitative evaluation for one CF model required around 20 minutes. PCA was
quite fast because we had tall-and-skinny matrices. We used built-in Spark methods as much as
possible for increased computational efficiency, such as pyspark.mllib, pyspark.sql, and pyspark.ml.
We were unable to create plots in EMR and jupyter, so we exported PCA representation to csv and
created plots locally. To save computational costs, we used spot instances and total cost was $37.5.

Computational Challenges In data preprocessing, one computational challenge of large scale
data is missing entries. Errors occured in subsequent steps if entries were Null or duplicated rows
of songs, because we used IndexedRowMatrix for PCA. To avoid these, we filled arbitrary val-
ues for Null values and removed duplicate entries. One of the time-consuming calculations was
recommending songs for all users with the CF model, which required around one hour using four
m5.xlarge workers. Without cacheing the result, Spark will recalculate the recommendation every
time it is used for further analysis, therefore cacheing after intense computes saves computation time.
We attempted to use cosine similarity to recommend nearby songs as an alternative recommender
method. However the implementation scales quadratically with number of songs. Calculation for
30,000 songs was not complete after one hour, and estimated completion time for 300,000 songs is
at least four days, which is prohibitively expensive. In future work, a different method for select-
ing nearby items, such as locality sensitive hashing, can be used. Another computational challenge
was hyperparameter tuning. State of the art methods such as Hyperband are difficult to implement,
and random/grid search in Spark are difficult to customize to specialized metrics and CF model.
Therefore the hyperparameter tuning was done by manual random search.

Results

Table 1 shows quantitative metrics for different recommender models, with evaluations based on top
10 model recommendations. "Top 10 songs" refers to always recommending the 10 songs which
were listened to by the most unique users. For "same artist songs", one artist which the user had lis-
tened to was selected randomly and the artists’ hottest songs were recommended in order. For artists
with less than 10 songs, the top 10 songs filled in remaining recommendations. For CF models,
80/20 split indicates train/test random split, while remaining indicate 1, 2, or 3 songs per user in the
trainset. These are reasonable trainsets because each user listened to at least 10 unique songs, with
around 60% of users listening to 10-47 unique songs. We see that CF performance greatly improves
when trained on more data per user. "Same artist" has highest quantitative performance overall,
however a user may want to listen to different artists than one they already know. Our results are
comparable with similar Bayesian personalized ranking matrix factorization (BPR-MF) [12]. Fig.
2 shows p(k) for k=1,...,10. The precision decreases with further recommended items. The steeper
decline for CF indicates that the first few recommended items are much more relevant than later
items. In contrast, the ordering for "top 10 songs" contains much less relevance information.

"CF 80/20", "CF 1song", and "CF 2song, no tune" were not hyperparameter tuned. The tun-
ing greatly increases performance, as evidenced from comparing "CF 2song, no tune" and "CF
2song". There were six random hyperparameters configurations tested, and the final configuration
was rank=25, max iterations=8, regularization=0.2, and alpha=10.

Table 2 shows some of the most popular songs and sample of recommendations for CF 3song. For
example, the model was trained on user listening to "Air Force Ones" by Nelly and two songs by
Jack Johnson. The CF recommended two songs by Jack Johnson, another song of OneRepublic (an
artist in top 10). For another user, the model was trained on three somewhat diverse songs (hip-hop,
80s, pop-punk), and the model recommended another Lil Wayne song and one of the top 10 songs
(Horn Concerto No 4). The model tends to recommend similar songs if there are strong affinities to
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Table 1: MAP and precision metrics for recom-
mender models

MAP p(1) p(10)
Top 10 songs 0.0138 0.108 0.0776
Same artist songs 0.0375 0.302 0.167
CF 80/20 split 0.0152 0.0341 0.0258
CF 1song 0.0078 0.0895 0.0493
CF 2song 0.0216 0.265 0.0785
CF 3song 0.0306 0.334 0.104
CF 2song, no tune 0.0138 0.142 0.0692
BPR-MF [12] 0.031 - 0.043 Figure 2: p(k) for k = 1, ..., 10

Figure 3: PCA representation of song latent factors from collaborative filtering.

songs in the training data, while also recommending generally popular songs. From both quantitative
and qualitative evaluation, we note one benefit of CF: recommendations’ quality and personalization
improve as the model is trained on more data per user.

Fig. 3 shows the 25-dimensional song latent factors from CF reduced to two dimensions using
PCA. The black points include 187,000 songs, which are mostly clustered and overlapping in the
center. We highlight some regions where similar songs are clustered: Justin Bieber, pop in orange
and Florence + the Machine, rock in green. We also checked PCA representation of song meta-data
such as hotness, familiarity, duration, loudness, year, and tempo, which did not cluster similar songs
together. In both cases, PCA did not disperse most songs, and future work can explore visualizations
with t-SNE or other methods. In addition, learning similarities from song audio data such as timbre
and combining with CF could be used for recommendation.

Table 2: Most popular songs and CF recommended songs based on user listens

Most popular songs

1. Sehr Kosmich - Harmonia
2. Undo - Bjork
3. Dog Days Are Over - Florence + the Machine
4. You’re The One - Dwight Yoakam
5. Revelry - Kings of Leon
6. Secrets - OneRepublic
7. Horn Concerto No 4 - Barry Tuckwell

User songs CF Recommended

Air Force Ones - Nelly
Better Together - Jack Johnson
You And Your Heart - Jack Johnson

1. All The Right Moves - OneRepublic
2. Bulletproof - La Roux
3. Do You Remember - Jack Johnson
4. Times Like These - Jack Johnson

Got Money - Lil Wayne, T-Pain
Crazy In The Night - Kim Carnes
The Curse of Curves - Cute Is What

We Aim For

1. Drop The World - Lil Wayne, Eminem
2. Horn Concerto No 4 - Barry Tuckwell
3. Nothin On You - Bob
4. Invalid - Tub Ring
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Image Dimensionality Reduction

Introduction

Dimensionality reduction and visualization is a basic but valuable topic in machine learning and
data mining community. Extensive methods have been developed over fast decades to improve the
performance of dimensionality reduction or visualization for high dimensional data. These methods
can be roughly divided into two types: linear (e.g. PCA [17], Multidimentional Scaling [16]) and
nonlinear dimension reduction (e.g. Locally Linear Embedding [15], AutoEncoder [5], t-SNE [11]).
While all of them can be applied for dimension reduction, they hold various assumptions and they
are suitable for different datasets. Desired dimension reduction techniques for recent large-scale
dataset should satisfy some criteria: 1) They could capture the high dimensional global pattern of
the whole dataset. 2) They persist as much useful information as possible during reduction process.
3) They are computationally efficient and scalable for large dataset.

In the machine learning community, lots of research has been conducted on the dimension reduction
for high dimensional data. PCA [17] is one of the most used linear dimension reduction tools. It
tries to find the orthogonal variables that minimizing the information loss through linear mapping
using the original features. By doing that, the PCA process reduces to the singular value decom-
position of the data matrix. The computational complexity of the classical PCA through eigenvalue
decomposition is O(nk2 + k3), where n is the number of data points and k is the dimensions of the
data, which could be a concern for high dimensional data. Also, because of the intrinsic assumption
of PCA, its performance for nonlinear data is not as promising as for linear data.

In addition to the linear reduction methods, there are also many tools to process nonlinear data
efficiently. Among them, t-SNE [11] is a typical example. It works by preserving the similari-
ties among data points or neighboring distances in high dimensional space when projecting them
into low dimensional space. This neighboring similarity relationships are kept by minimizing the
Kullback–Leibler divergence between the gaussian distribution in original space and the t-student
distribution in low dimensional space. From this aspect, it is suitable for visualize high dimen-
sional data while keeping global distribution pattern in high dimensional space. However, the exact
t-SNE has a computational complexity of O(n2), which constraints its application for large dataset.
Also, t-SNE is conducted in a nondeterministic way. Thus, it is possible to get differet outputs for
the same input under different random conditions. Therefore, some evolutions of t-SNE have been
proposed over the previous years. Maaten proposed BH-t-SNE to scale down the time complexity
to O(n log n) and memory to O(n) from O(n2). Fu et al. came up with the anchor t-SNE which
preserves the global information using anchor points generated by K-Means. The local information
is kept by neighboring distances among ordinary data points and the distances to the anchor points.
What’s more, the implementation of anchor t-SNE is highly parallel and could take the advantage
of GPU.

Autoencoder [5] is another type of dimensionality reduction technique which is based on neural
networks. One neural network is used to encode the input data and the other neural network is for
decoding. It enforces the encoding features to store as much information as possible to minimize the
reconstruction error between the original data and the output of the decoder. After the autoencoder,
Kingma and Welling proposed variational autoencoder, which not only tries to learn the embedding
of the data in low dimensional space, but also the distribution of the latent features, which could be
used as a generative method.

In this project, we aim to empirically compare different dimensionality reduction methods from
various aspects, such that we could have an overview on the advantages and disadvantages of these
methods. More specifically, we are curious about the quality of the data pattern in low dimensional
space, the required time to conduct the dimension reduction as well as the easiness to use these tools.
People tend to use the tools that are easy to use and widely available. We also want to understand
the underline reasons that cause different performance for these methods.

As a example dataset, CIFAR-100 [8] is explored in our project. It contains 60000 RGB images of
32× 32 with 10 different coarse classes and 100 refine classes. Each image is a 32× 32× 3 tensor,
and it requires some preprocessing before feed it into different dimensionality reduction methods.
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Figure 4: Diagram for CIFAR100 dimension reduction. An image is preprocessed by a pretrained
Resnet-50 to extract a vector encoding, followed by various dimention reduction to mapping it to
lower space. Visualization and KNN classification happen in the low dimensional space.

Methodology

The entire pipline of this project is shown in Fig 4. In this pipline, each image with shape of
32 × 32 × 3 is firstly upsampled to 224 × 224 × 3 to satisfy the requirement of the pretrained
ResNet-50 [4] since this model was pretrained on the ImageNet dataset. At the output side of the
network, we extract two kinds of features to represent each image. The first type is a vector of
2048 dimensions that is directly from the output of the ResNet model. The other type is a vector
of 1024 dimensions after we fine tune the pretrained model to the CIFAR-100 datasets. CNN is
used to extract the latent features is that it is suitable for dealing with image data. Most dimension
reduction techniques require the input data to be a vector instead of a matrix or tensor. Thus, we
choose CNN to preprocess the tensor image data into a vector. Also, the pretrained CNN could
generate reasonable latent features that we rely on in the next part of the pipeline. After extracting
these latent features, we feed them into six different dimensionality reduction methods: PCA [17],
LLE [15], t-SNE-CUDA [2], Anchor-t-SNE [3], Autoencoder [5] and variantional Autoencoder [7].
These methods cover the common linear and non-linear dimension reduction tools. The obtained
2D latent features from these tools are used for two tasks: visualization and classification, which
aim to test different properties of the methods.

We use three metrics to evaluate these dimensionality reduction tools. The first one is that if the
methods could preserve the global pattern in high dimensional space. This could be evaluated by
the visualization effect in 2D space, which is a qualitative metric. The second one is the required
time to conduct the dimension reduction. We simply measure the running time to process 60000
CIFAR-100 images by different models despite they may be run on various hardwares like CPUs
and GPUs. Since the ability to utilize suitable hardware is also an attribute we want to evaluate.
For example, we run PCA and LLE on CPUs. The t-SNE-CUDA, Anchor-t-SNE, Autoencoder and
variational autoencoder are run on GPUs. The last metric we focus on is the classification accuracy
using KNN on the projected low dimensional space. This metric provides a quantitative sense about
the quality of the dimention reduction. High KNN accuracy means relevant images are clustering
together in new space and it is highly probable that this mapping preserve the relationships among
images in original space. The reason for choosing KNN as the classfier is that KNN conducts
the classification based on the neighboring environment around the test sample. Also, it is a non-
parametric model that only depends on the input features of the data points. We use cross validation
to choose the optimal K for the latent features obtained by each method, and report the highest
accuracy dimension reduction method.

Computation

There are three computational phases in this project. The first phase is retriving the CIFAR-100
dataset and preprocessing it into proper type. We download the dataset from one of the Keras
modules. The ResNet-50 model pretrained on ImageNet is also obtrained from Keras. Before fed
into ResNet model, the original images are upsampled using the resize module of cv2 package. The
fine tuning process are completed by adding a fully connected layer on the top of the ResNet. This
preprocess phase is run on Colab utilizing the free GPU provided by Google.

The second phase is the dimension reduction based on the extracted features in the first phase. For
PCA and LLE, there are already implemented package in sklearn, and we just use them directly.
Since they do not support GPU, so we conduct them using CPU only. For t-SNE-CUDA, it is
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installed using pip module. The usage of t-SNE-CUDA is similar to the standard t-SNE in sklearn,
which is easy to use. Unlike t-SNE-CUDA, anchor-t-SNE does not support pip to install. The only
way to install it is clone from the original github and compile it locally. There was a problem when
compiling its cuda component on Colab, thus we used p2.xlarge EC2 on AWS to install and use it.
For autoencoder and variational autoencoder, we take the advantage of GPU on AWS to train the
neural networks efficiently. The last phase is to plot the embedded features and conduct KNN to do
the classification. Since the data is reduced to 2D space, which is quite small in size, so we just use
local machine to plot the data points and conduct the KNN package from sklearn.

As a summary, we use Colab with GPU to preprocess the CIFAR-100 dataset to extract the vector
features. The preprocess takes about 1 hour to get the final features. Then, for PCA and LLE, we use
one m5.large machine on AWS to do the dimension reduction. For t-SNE-CUDA, anchor-t-SNE,
autoencoder and variational autoencoder, we utilize one p2.xlarge machine on AWS to reduce the
dimensionalities. The dimension reduction phase takes about 15 hours to finish with LLE as the
bottleneck. The cost for m5.large is about 1.44 dollars, which is 1.8 dollars for p2.xlarge. We did
not use any storage service for this project since all files are small enough to fit the default storage in
these machines. All of these tasks are completed using Python. Some component of anchor-t-SNE
are written in CUDA, but the authors have provided a python wrapper to use them.

Results

Figure 5: Plots for reduced dimensions from vectors with 2048 dimensions extracted from ResNet-
50 without fine tuning. 10 coarse classes are labeled by different colors.

Figure 6: Plots for reduced dimensions from vectors with 1024 dimensions extracted from ResNet-
50 with fine tuning. 10 coarse classes are labeled by different colors.
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We present the plots of the reduced dimensions for six forementioned dimensionality reduction
methods in Fig 5 and Fig 6. The input features for these two figures are different. Fig 5 are vector
with 2048 dimensions directly extracted from ResNet-50 without fine tuning. Fig 6 are from vectors
with 1024 dimensions with fune tuning. Solely from the visual comparison, Fig 6 looks slightly
better, points with the same class are gathered closer compared to Fig 5, but the difference is not so
apparent. Among different dimensionality reduction methods, LLE has the worst performance on
the visualization effect. All points are distributed across a line and it is hard to tell these points. PCA
and VAE have the similar performance, there is clustering among the points with the same label but
the boundary between two classes is not apparent. Data overlapping is also an issue for these two
methods. Autoencoder generates a special results among these methods. The clusters are not in
a circular shape like in other methods, but look like spindles. Maintaining large distances among
different classes might help to decrease the reconstruction loss during the training process. Anchor-
t-SNE and the t-SNE-CUDA are the best methods to conduct the dimensionality reduction based on
the visualization effect. The whole dataset is almost evenly distributed around the 2D space. Points
with the same class are gathered together while keep a relatively apparent boundary with different
classes. The generated plots of these two methods are also similar to each other since intrinsically,
they are conducting the same t-SNE algorithm.

Table 3: Running time for different dimension reduction methods
Methods 2048D (s) 1024D (s)

PCA 2.42 1.20
LLE 51814.28 33631.92
t-SNE-CUDA 34.19 21.00
Anchor-t-SNE 46.89 36.52
AE 71.57 (50 epochs) 50.54 (50 epochs)
VAE 51.49 (25 epochs) 37.74 (25 epochs)

The running time for these methods are listed in Table 3. PCA is the fastest method to conduct
the dimension reduction over 60000 images. This is reasonable since PCA scales linearly with the
number of data points. LLE takes longest time to do the reduction task. It scales O(n2) with respect
to the number of data points. What’s more, LLE in sklearn has no acceleration from GPU. Anchor-
t-SNE, t-SNE-CUDA, AE and VAE take similar time in this task. They share the acceleration from
GPUs.

Table 4: KNN Classification Accuracy
Methods 2048D (coarse) 2048D (refine) 1024D (coarse) 1024D (refine)

PCA 0.2218 0.0743 0.2785 0.0937
LLE 0.3626 0.1808 0.3807 0.2113
t-SNE-CUDA 0.5868 0.4082 0.6610 0.4887
Anchor-t-SNE 0.6811 0.5224 0.7483 0.5898
AE 0.5048 0.2825 0.5968 0.3570
VAE 0.1798 0.0660 0.1903 0.0585

KNN classification is used to quantitatively evaluate the quality of feature embedding. The results
are shown in Table 4. Anchor-t-SNE have the best accuracy in these methods. This effect might be
related to the anchor points used in the dimension reduction process. These anchor points help the
points sharing the same class to be clustered closer around each centers. t-SNE-CUDA also has a
relatively high accuracy compared to other methods. Nonlinear dimention reduction methods AE
and LLE are better than the linear method PCA. Although LLE has the worse visualization effect
than PCA, but the result in KNN classification shows that similar points are still be embedded close
in LLE. VAE has the lowest accuracy, this might be resulted from the KL divergence term against
the standard distribution in its loss function. All points are enforces to be gathered around a center,
which decreased its classification accuracy based on the neighboring environment.
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